
54   resakss.org

 

 
 

 

CHAPTER 5 
Trade, Climate Change, and 
Climate-Smart Agriculture

Beliyou Haile, Carlo Azzarri, Jawoo Koo, and Alessandro De Pinto16

16  The authors acknowledge the generous support of the CGIAR Research Program on Climate Change, Agriculture and Food 
Security (CCAFS), which is carried out with support from CGIAR Fund Donors and through bilateral funding agreements. For 
details please visit https://ccafs.cgiar.org/donors. We also thank the CGIAR Research Program on Policies, Institutions, and 
Markets (PIM) for supporting previous initiatives upon which we have built our modeling work.



2016 ReSAKSS Annual Trends and Outlook Report    55

T
he eradication of poverty in Africa south of the Sahara (SSA), 

whose poverty rate is the highest in the world, and of its food and 

nutrition insecurity necessitates structural transformation of the 

agricultural sector. Meanwhile, global climate change models suggest an 

overall warming trend and increased incidence of extreme weather events 

that vary by altitude (Serdeczny et al. 2017). These changes are expected to 

have a significant impact on agricultural productivity and the availability 

of productive resources globally and in SSA, a region that relies heavily on 

rainfed agriculture (Knox et al. 2012; Müller and Robertson 2014).

At the same time, agriculture affects climate change through anthro-

pogenic greenhouse gas (GHG) emissions and by acting as a greenhouse 

gas sink. GHG emissions result, for instance, from enteric fermentation, 

application of synthetic fertilizers, land use change, and deforestation, while 

a sink removes atmospheric GHG by storing (sequestering) it in other forms 

through photosynthesis. Africa accounted for 15 percent of the world’s 

agriculture-related GHG emissions in 2012, making it the third most 

important contributor, after Asia (45 percent) and the Americas (25 percent) 

(Tubiello et al. 2014). Considering the pressure on agricultural production 

driven by population growth, growth in gross domestic product (GDP) and 

a consequent change in diets toward higher consumption of animal-source 

foods, and the risks posed by climate change, farmers need options to sus-

tainably increase production. 

Climate-smart agriculture (CSA) is one approach that has been 

promoted to enhance agricultural productivity, food security, and adaptive 

capacity, while at the same time reducing GHG emissions and increasing 

carbon sequestration (Campbell et al. 2014; Huang, Lampe, and Tongeren 

2011). The CSA approach, which became prominent during the First Global 

Conference on Agriculture, Food Security and Climate Change (FAO 2013), 

is an umbrella term that includes many strategies built upon location-

specific solutions that are expected to contribute toward achievement of the 

Sustainable Development Goals (SDGs). It relies on agricultural systems 

that contribute to three outcomes: (1) sustainable and equitable increases in 

agricultural productivity and income; (2) greater resilience of food systems 

and farming livelihoods, and (3) reduction and removal of GHG emissions 

associated with agriculture, wherever possible. Agricultural production 

systems that follow the tenets of CSA are expected to be not only more 

productive and efficient, but also resilient to short-, medium-, and long-term 

shocks and risks associated with climate change and variability. 

The CSA approach represents a departure from the single-objective 

approach that underlies most work to ensure food and nutrition security. 

CSA’s multi-objective approach facilitates important conversations, negotia-

tions, and coordination of interventions among different ministries. Many 

operational aspects of CSA, however, are still under investigation. Local 

contexts determine the enabling environment, the trade-offs, and the 

synergies of CSA, so practices and technologies may be climate smart in 

some circumstances and conditions but not in others. Therefore, how these 

practices deliver across the three pillars of CSA, and the conditions for their 

adoption, are highly specific to contexts and locations, with fundamental 

implications for the operational aspects of CSA (McCarthy, Lipper, and 

Branca 2011). Indeed, short-term productivity may even decrease under 

CSA (Pittelkow et al. 2015), with more stable and often increasing yields 

observed over time, especially under dry or drought-stressed conditions 

(Corbeels et al. 2014; Pittelkow et al. 2015).
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Another approach being promoted to ensure the eradication of extreme 

poverty and promote inclusive and sustainable development, especially in the 

face of climate-induced changes in the amount and distribution of produc-

tion, is trade (Sommer and Luke 2016). Trade is recognized as a cross-cutting 

means of implementing the 2030 Agenda for Sustainable Development under 

SDG 17. Agricultural commodity trade in Africa has increased steadily over 

the past 30 years, with net exports (exports minus imports) rising from 

2 to 6 percent of GDP between 1980 and 2014 (IMF 2016). Despite these 

improvements, the region not only accounts for a small share of the global 

commodity trade but has one of the lowest intraregional trades in goods 

(16 percent, versus 17 percent for South and Central America, 42 percent for 

North America, 62 percent for the European Union, and 64 percent for Asia) 

(Davis 2016; Khandelwal 2005; Tamiotti et al. 2009). 

Although a number of regional economic communities (RECs) have 

been established to promote economic integration and trade, including 

the Common Market for Eastern and Southern Africa (COMESA),17  the 

Economic Community of West African States (ECOWAS),18  and the 

Southern African Development Community (SADC),19 intraregional trade 

remains staggeringly low. For example, between 2001 and 2010, intraregional 

trade grew at 2 percent, 1.3 percent, and 0.9 percent per year, on average, 

for ECOWAS, SADC, and COMESA, respectively, and intraregional trade 

17  COMESA includes Burundi, Comoros, Democratic Republic of the Congo, Djibouti, Egypt, 
Eritrea, Ethiopia, Kenya, Libya, Madagascar, Malawi, Mauritius, Rwanda, Seychelles, Sudan, 
Swaziland, Uganda, Zambia, and Zimbabwe.

18  ECOWAS includes Benin, Burkina Faso, Cabo Verde, Côte d’Ivoire, Gambia, Ghana, Guinea, 
Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, and Togo.

19  SADC includes Angola, Botswana, Democratic Republic of the Congo, Lesotho, Madagascar, 
Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, United Republic 
of Tanzania, Zambia, and Zimbabwe, of which eight also belong to COMESA.

accounted for 9 percent, 9.8 percent, and 5.6 percent of the total trade, on 

average, for ECOWAS, SADC, and COMESA, respectively (Seid 2013). But 

intraregional trade is expected to increase in the coming decades, thanks to 

an emerging favorable trade environment including the establishment of the 

African Continental Free Trade Area (UNCTAD 2016); the Malabo declara-

tion, aimed at tripling intracontinental trade in agricultural commodities 

and services by 2025; and the African Union’s Agenda 2063, which aims to 

increase intracontinental trade from 12 percent to 50 percent and the con-

tinent’s share of global trade from 2 percent to 12 percent between 2013 and 

2045 (African Union Commission 2015).

This chapter examines the role of CSA in mitigating the negative effects 

of climate change on yields and commodity trade flows in SSA. The analysis 

is disaggregated by the three RECs—SADC, ECOWAS, and COMESA—to 

capture possible region-specific factors that could mediate the interaction 

between agricultural production and trade flow as well as potential location 

specificity in the effectiveness of CSA practices. We simulate the expected 

effects of adoption of four CSA practices for the period 2018–2025: no 

tillage (NT) and integrated soil fertility management (ISFM) for maize, 

and urea deep placement (UDP) and alternate wetting and drying (AWD) 

for rice. These practices are found to increase agricultural productivity 

and net exports, highlighting the potential that CSA has in mitigating 

climate-induced risks in agricultural production, food security, and 

foreign currency. 
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Conceptual Framework 
The linkage between climate change, agricultural production, and trade flow 

is quite complex, as summarized in Figure 5.1. Given the reliance of Africa’s 

agriculture on weather and its role in the region’s 

trade, climatic changes such as rising tempera-

ture, weather variability, and extreme weather 

events (such as El Niño and La Niña) will have a 

significant impact on the availability of produc-

tive resources, productivity, food security, foreign 

exchange, and physical infrastructure (Müller 

and Robertson 2014). Important drivers of the 

relationship between agriculture and trade in 

the region are the production landscape and 

the biophysical conditions. Favorable climatic 

and weather conditions increase net exports by 

affecting the supply of exportable commodities, 

whereas climate changes and variability that 

reduce the supply of agricultural production 

have the opposite effect, given the possibility of 

substitution between internally produced and 

externally procured goods.

Climate change affects not only yields but 

also the pattern of production, the latter by 

changing countries’ comparative advantage in 

the production of certain crops. By changing 

precipitation patterns and reservoir storage, 

it will also impact water availability for power production and irrigation 

(You et al. 2011). The effects of climate change will vary by agroecology 

and by countries’ adaptive capability (Hebebrand 2009; Kang et al. 2009; 

FIGURE 5.1—LINKAGES BETWEEN CLIMATE CHANGE, AGRICULTURAL PRODUCTION, 
AND AGRICULTURAL COMMODITY TRADE 

Source: Authors, based on review of relevant literature.
Note: CSA = climate-smart agriculture; GHG = greenhouse gas.
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Wheeler 2011). For example, rising temperatures will lengthen the growing 

period in mid- and high-latitude areas, with lower temperatures having the 

opposite effect in low-latitude areas. In this regard, a widespread adoption of 

improved agricultural technologies and management practices that reduce 

GHG emissions, improve the sequestration of carbon in agricultural soils, 

and curtail undesirable land use changes could play a crucial role in miti-

gating the effects of climate change. 

Unlike continuous tillage, which leaves soils prone to erosion and 

is a major source of soil carbon loss (Reicosky et al. 2005), NT practices 

improve general soil fertility through retention of water and nutrients, at 

the same time benefiting soil aeration and biota, with potential direct effects 

on agricultural productivity (Hobbs, Sayre, and Gupta 2008; Thierfelder, 

Mwila, and Rusinamhodzi 2013). The existing literature on conservation 

agriculture, of which NT is an essential component, points to an increase in 

yields, but the effects are notably variable, dependent on a range of location-

specific factors such as climate and soil type (Pittelkow et al. 2015; Lal 2015; 

Erenstein et al. 2012). Similarly, ISFM, a set of locally adapted practices 

using residues along with both organic and inorganic inputs (for instance, 

animal manure and green manure) to promote the efficient use of nutrients, 

can significantly increase productivity (Vanlauwe et al. 2011). 

Given that agriculture is a crucial foreign exchange earner in SSA, 

climatic changes that affect productivity and the distribution of produc-

tion will ultimately impact the region’s trade flow. In addition, extreme 

weather events such as La Niña and El Niño, which interfere with ship 

navigation and port operations as well as damaging physical infrastructure, 

could hamper the flow of trade locally, regionally, and internationally. 

At the same time, trade contributes to climate change through increased 

GHG emissions due to the transportation of commodities and increased 

consumption of tradable goods. Free trade can help offset climate-induced 

changes in agricultural production and food supply, and trade liberalization 

and investments can encourage the introduction of more (energy-) efficient 

production processes that emit fewer GHGs per unit of output produced 

and traded. Thus, trade can serve as both a mitigation and an adaptation 

strategy to climate change.20

Finally, trade and agricultural policies can either worsen or mitigate 

climatic changes, depending on whether they encourage or limit the pro-

duction and distribution of GHG-intensive goods (IPCC 2007). Similarly, 

large-scale adoption of improved technologies and practices can cause an 

agricultural glut if local, regional, and international markets are too weak to 

absorb the boost, potentially inducing suboptimal adoption in subsequent 

cropping seasons. Although disentangling these complex linkages between 

climate change, agriculture, and trade is beyond the scope of this study, the 

chapter examines the potential role of CSA in enhancing yields and trade 

flow in SSA in the face of expected climatic changes. 

Data and Summary 
The analysis uses secondary data from several sources. A time series 

(1993–2010) of country-level data on the gross value of agricultural produc-

tion in purchasing power parity (PPP) (constant 2004–2006 international 

20 Mitigation aims at reducing GHG emissions sources or enhancing GHG sinks, whereas adaptation 
refers to adjustments to mitigate detrimental effects of actual or anticipated climatic changes and 
to seize opportunities induced by climate change (IPCC 2007).
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dollars)21 and trade flow in US dollars comes from the Food and Agriculture 

Organization’s trade statistics database, FAOSTAT (FAO 2017). Data on 

population and GDP per capita in PPP (constant 2011 international dollars) 

are obtained from the World Bank (World Bank 2017a, 2017b). 

For crop modeling, we use a time series of site-specific weather 

data from the US National Aeronautics and Space 

Administration’s (NASA’s) AgMERRA database 

(Ruane, Goldberg, and Chryssanthacopoulos 

2015). AgMERRA (based on NASA’s Modern-Era 

Retrospective Analysis for Research and Applications, 

or MERRA) compiles satellite-measured weather data 

for 30-arc-minute grid squares, including minimum 

temperature, maximum temperature, solar radiation, 

and precipitation. Our source for high-resolution (in 

5-arc-minute grid squares) soil property data is the 

Global High-Resolution Soil Profile Database (IRI et 

al. 2015). The geography of the two crops we simulate 

(maize and rice) is based on the Spatial Production 

Allocation Model (SPAM) (IFPRI and IIASA 2016).22

21 An international dollar has the same purchasing power as the U.S. 
dollar has in the United States. Values and costs in local currency are 
converted to international dollars using purchasing power parity (PPP) 
exchange rates. The PPP between two countries A and B measures 
the amount of A’s local currency needed to purchase a basket of 
commodities in A as compared to one unit of B’s currency needed to 
purchase a similar basket of commodities in B (World Bank, 2017c). 

22 The analysis excludes the following countries due to incomplete data 
on trade, simulated yields, or both: Benin, Cabo Verde, Comoros, 
Djibouti, Egypt, Liberia, Mauritius, Seychelles, and Sierra Leone. 
Data on gross value of agricultural production is missing for Angola, 
Democratic Republic of Congo, Lesotho, Libya, Swaziland, Uganda, 
and Zimbabwe.

Figure 5.2 summarizes the per capita gross value of agricultural pro-

duction (constant 2004–2006 international dollars). Per capita gross value 

has been rising steadily over the years, with ECOWAS reaching consistently 

higher production than the other two RECs. The population of the region 

grew at about 2.3 percent per year, whereas per capita GDP (constant 2011 

FIGURE 5.2—HISTORICAL PER CAPITA GROSS PRODUCTION VALUE (LEFT AXIS) 
AND GROWTH RATE OF PER CAPITA GROSS DOMESTIC PRODUCT (RIGHT 
AXIS), SELECTED AFRICAN REGIONAL ECONOMIC COMMUNITIES, 1993–2010

Source: Authors’ own calculations based on agricultural production data from FAO (FAO 2017) and population data from the World Bank 
(World Bank 2017b).  
Note: COMESA = Common Market for Eastern and Southern Africa; ECOWAS = Economic Community of West African States; GDP = gross 
domestic product; I $ = international dollars; SADC = Southern African Development Community.
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international dollars) grew at about 1.7 percent, with a much faster growth 

observed from the first years of the new millennium until the dip in 2009, 

following the 2007–2008 financial crisis. 

Figure 5.3 summarizes net agricultural exports (in millions of US 

dollars) by REC. Overall, the region has been a net importer of agricultural 

commodities since just after the turn of the 21st century, with net exports 

(in absolute value) accounting for about 4.5 percent of GDP, on average. 

Although the gross value of agricultural production has been rising, the 

relatively faster economic growth since the early years of the century has 

created a strong demand for consumer-oriented agricultural products such 

as prepared foods, dairy, poultry, and vegetables (USDA 2014). What is 

more, many of the net importers were unable to pay for their imports. For 

example, the export revenues of only one-third of African countries were 

large enough to pay their food import bills, with the rest of them resorting 

to external funding (Rakotoarisoa, Iafrate, and Paschali 

2011). Cereals, oilseeds, and dairy products accounted 

for more than 60 percent of the region’s total imports, 

whereas coffee, cocoa, tea, and fruits and vegetables 

accounted for more than 55 percent of total exports 

(Rakotoarisoa, Iafrate, and Paschali 2011). 

Method 

Climate-Smart Agriculture and Yields

Crop growth is affected by several factors, including 

weather condition, soil type, and farmers’ management 

practices. Process-based crop models simulate crop 

growth by dynamically interacting these factors. Since 

the 1970s, as plant science has rapidly advanced with a 

better understanding of how plant photosynthesis and 

respiration processes work, various forms of dynamic crop 

models have been developed and used to support farm 

management decision making. Given the complex nature 

FIGURE 5.3—HISTORICAL TOTAL AGRICULTURAL NET EXPORTS, SELECTED 
AFRICAN REGIONAL ECONOMIC COMMUNITIES, 1993–2010

Source: Authors’ own calculations based on trade flow data from FAO (FAO 2017) and GDP data from the World Bank (World Bank 2017a).  
Note: COMESA = Common Market for Eastern and Southern Africa; ECOWAS = Economic Community of West African States; GDP = gross 
domestic product; SADC = Southern African Development Community.
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of CSA implementation in the fields and its potential impacts, this study 

uses the Decision Support System for Agrotechnology Transfer (DSSAT) 

(Hoogenboom et al. 2015; Jones et al. 2003) to simulate the effects of the 

adoption of selected CSA practices. 

DSSAT combines a suite of complex and dynamic crop system models 

to estimate the biophysical responses of crops under various scenarios, in 

our case, scenarios of large-scale CSA technology adoption by farmers. 

DSSAT integrates the effects of crop system components and manage-

ment options to simulate the states of all the components of the cropping 

system and their interactions. DSSAT crop models are designed based on 

a systems approach, which provides a framework for users to understand 

how the overall cropping system and its components function throughout 

cropping season(s) on a daily basis. Table 5.1 summarizes the CSA prac-

tices we focus on.

TABLE 5.1—SUMMARY OF CLIMATE-SMART AGRICULTURAL 
PRACTICES CONSIDERED

CSA technology Definition Crop

No tillage
Minimal or no soil disturbance, often in 
combination with residue retention, crop 
rotation, and use of cover crops

Maize

Integrated soil fertility 
management

Combination of chemical fertilizers, crop 
residues, and manure or compost

Maize 

Alternative wetting and 
drying

Repeated interruptions of flooding during 
the season, causing water to decline as the 
upper soil layer dries out before subsequent 
reflooding

Rice

Urea deep placement
Strategic burial of urea “supergranules” near 
the root zones of crop plants

Rice

Source: Authors’ review of the relevant literature.
Note: CSA = climate-smart agriculture.

It has been shown that ISFM improves the resilience of soils and agri-

cultural production systems to weather variability (Roobroeck et al., 2016). 

This finding is dependent on the fact that synthetic fertilizers and organic 

inputs bring diverse benefits to the soil. AWD has been used in paddy rice 

cultivation, one of the main sources of non–carbon dioxide GHG emissions 

from the agriculture sector, after livestock and soil (Smith et al. 2014), to 

significantly reduce methane emissions from rice paddies (FAO 2013; Tyagi, 

Kumari, and Singh 2010) and, in some instances, also to increase yields 

(Rejesus et al. 2011). 

UDP aims at the efficient use of nitrogen, key to both increased produc-

tion and reduced emissions (FAO 2013). Broadcast application of nitrogen 

in rice fields leads to 60 to 70 percent nitrogen losses, directly contributing 

to both water pollution and GHG emissions. The placement of urea “super-

granules” deep in the soil provides a slow release of fertilizer near the root 

system of rice plants, thereby improving the efficiency of nutrient uptake 

and limiting nitrogen losses. The result is an increase in yields combined 

with a significant reduction in leached nitrates and therefore a lower 

likelihood of nitrous oxide emissions. At the same time, UDP increases 

the resilience of agricultural systems by making them less susceptible to 

economic shocks due to changes in energy prices.

Conditions for adoption of CSA practices are highly context and location 

specific, highlighting the need for information and data to make a true CSA 

approach to agricultural development operational (McCarthy, Lipper, and 

Branca 2011). From the farmers’ perspective, however, the problem is quite 

different. Adoption of practices and technologies that are alternatives to the 

status quo depends on many factors. An extensive literature has investigated 

the socioeconomic determinants of adoption of alternative practices, 
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attempting to account for farmers’ and farms’ charac-

teristics by considering access to markets and credit, 

the characteristics of the technology, the quality of 

extension services, and risk factors as important 

factors of adoption (Bewket 2007; Enfors and Gordon 

2008; Shiferaw, Okello, and Reddy 2009; Teklewold 

and Kohlin 2011).

We assume that farmers who are currently using 

a determinate set of practices to produce either maize 

or rice have the option to choose from a portfolio of 

alternatives (that is, the four CSA practices consid-

ered). In addition, we assume that they have complete 

information regarding potential yields and are able 

choose the alternative that provides the highest yield 

for their grid square compared with business-as-usual 

practices, a scenario we refer to as a “smart farmer 

option.” Depending on the location, therefore, the 

CSA practice that corresponds with the smart farmer 

option could be one of the four CSA practices we 

are considering (NT or ISFM for maize and UDP 

or AWD for rice). In cases in which the alternatives are not projected to 

produce yield gains, farmers are assumed to retain the current practices. 

Although these assumptions are an extreme simplification of the condi-

tions for adoption of alternative practices, it is difficult to imagine that 

countries would favor the widespread use of technologies that reduce yields 

in the face of high population growth rates and changing diets. Therefore, 

the yield-increase assumption on which adoption is based is considered 

justified with the understanding that the analysis could overestimate CSA 

adoption rates and hence their effects. 

For each grid-cell level and crop, yields were simulated for alterna-

tive CSA practices for 2018–2025 based on AgMERRA weather data for 

2003–2010, assuming the weather patterns for 2018–2025 will be identical 

FIGURE 5.4—HISTORICAL (1993–2010) AND SIMULATED (2018–2025) YIELDS 
UNDER THE SMART FARMER OPTION, ECOWAS

Source: Authors’ own calculation based on historical yield data from FAO (FAO, 2017) and DSSAT-simulated yields.
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to those of the earlier period. To simulate the effects of CSA on agricultural 

commodity trade flow, simulated yields are converted into monetary values 

using crop-specific FAOSTAT data on cultivated area and a PPP conversion 

factor.23

23 The PPP conversion rate is calculated as the ratio between production value in thousands of 
constant 2004–2006 international dollar per metric ton and the quantity of production in metric 
tons. 

A summary of historical and simulated yields (in tons/hectare)24

associated with the smart farmer option for each REC is shown in Figures 

5.4–5.6. The ECOWAS region has witnessed a steady increase in maize yield 

over the years, except for 2007 (Figure 5.4, panel A), whereas the increasing 

trend in maize yield observed for COMESA (Figure 5.5, panel A) and 

24  Throughout the chapter, tons refers to metric tons.

FIGURE 5.5—HISTORICAL (1993–2010) AND SIMULATED (2018–2025) YIELDS 
UNDER THE SMART FARMER OPTION, COMESA

Source: Authors’ own calculation based on historical yield data from FAO (FAO, 2017) and DSSAT-simulated yields.
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SADC (Figure 5.6, panel A) begins after the early years of the 21st century. 

Compared with maize yields, rice yields show more temporal variation. 

Nonetheless, given the projected climatic changes, these increasing trends 

in yields may not be sustained (Lesk and Ramankutty 2016). On the other 

hand, large-scale adoption of CSA practices has the potential to increase 

yields, as summarized in panel B of the respective figures. 

Climate-Smart Agriculture and Trade Flow
To examine the link between agricultural production and trade flow, we 

estimate Equation (1) using historical data: 

  NXct=α0 + α1 Yct + Λ' Zc(t)+γt + εct ,  (1)

where c and t are country and year indexes, respectively; NX is the gross 

value of total agricultural net exports (in millions of US dollars); Y is the loga-

rithm (log) of the gross value of agricultural production 

(in constant 2004–2006 international dollars, thousands); 

Z is a matrix of time-varying or time-invariant factors 

that could affect net exports, including the log of per 

capita GDP (in constant 2011 international dollars), pop-

ulation (in millions), price indexes of agricultural imports 

and exports, and crop land area (millions of hectares); t is 

a linear time trend to capture overall temporal trends in 

NX; and ε is the (composite) error term. 

For the sake of comparability, Equation (1) is esti-

mated using pooled ordinary least squares (OLS) and 

random-effects (RE) estimators, the latter assuming Y 

and Z to be exogenous (see Cameron and Trivedi 2005 

and Wooldridge 2010 for general discussions). Since we 

are estimating a level-log model, a percent increase in 

Y is associated with α̂1 ⁄100 change in NX, where α̂1 is 

the coefficient estimate of Y. Robust standard errors are 

clustered at the country level to correct for intracountry 

serial correlation and cross-country heteroscedasticity. 

Next, OLS point estimates from Equation (1) and the 

projected increase in the gross value of agricultural 

FIGURE 5.6—HISTORICAL (1993–2010) AND SIMULATED (2018–2025) YIELDS 
UNDER THE SMART FARMER OPTION, SADC

Source: Authors’ own calculation based on historical yield data from FAO (FAO, 2017) and DSSAT-simulated yields.
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production are used to simulate the effects of CSA on net agricultural 

exports for the period 2018–2025. To simulate net exports, we assume that 

the values of Z during the forecast period will remain the same 

as those during 2003–2010. A similar assumption is made about 

the value of all other agricultural commodities (except maize 

and rice) that constitute Y, so that simulated Y (Ys) is calculated 

as Ys = Y – Yc
b + Yc

s, where b, s, and c index baseline, simulation, 

and crop (either maize or rice), respectively.

Results and Discussion 
Table 5.2 presents OLS and RE estimates of Equation (1). 

Overall, coefficient estimates are jointly significant, although 

only at the 10 percent level for the RE estimator. The model 

fitness statistic from the OLS estimation shows that the condi-

tioning variables explain about 40 percent of the model variance. 

The overall model fitness in the RE estimation (R-squared 

overall) is about 23 percent and the fact that “R-squared overall” 

and “R-squared within” are not quite close suggests the impor-

tance of country fixed effects. The fraction of the variance due to 

country fixed effect (rho) is 0.76. Depending on the estimator, 

a 1 percent increase in the gross value of agricultural produc-

tion (in constant 2004–2006 international dollars, thousands) 

increases total agricultural net exports by about US$ 4.1 million 

to US$ 4.5 million. 

This increase amounts to about 5.2 percent, 4.6 percent, 

and 3.1 percent, in absolute value, of the yearly average total 

agricultural net exports for COMESA, ECOWAS, and SADC, respectively, 

for 1993–2010. Alternatively, climatic changes that cause a 1 percent 

TABLE 5.2—NET AGRICULTURAL EXPORTS (IN MILLIONS OF US 
DOLLARS) AND GROSS VALUE OF AGRICULTURAL PRODUCTION, 
SELECTED AFRICAN REGIONAL ECONOMIC COMMUNITIES,1993–2010  

Dependent variable: agricultural net 
exports (millions of US $)

OLS Random-effects

Coef. Std. err. Coef. Std. err.

Log. gross production value (thousands 
of constant 2004–2006 international $) 410.127*** 139.150 447.689** 180.352

Population (millions) -0.000 0.000 -0.000** 0.000

Per capita gross domestic product (2011 
international $) 0.017 0.020 -0.072 0.069

Import value index (2004–2006 = 100) -2.085 1.747 -2.264* 1.302

Export value index (2004–2006 = 100) 0.962 0.917 1.494** 0.658

Total cereal area harvested (millions of 
hectares) -104.634** 43.684 36.998 60.310

Linear time trend -4.552 7.179 8.218 7.600

Constant 3,862.029 14,108.674 -21,845.842 15,385.298

Number of observations (N*T) 450 450

Adjusted R-squared 0.407 n.a.

R-squared within n.a. 0.367

R-squared between n.a. 0.224

R-squared overall n.a. 0.228

Chi-squared n.a. 13.104

F-statistic 3.959 n.a.

Panel-level std. dev. n.a. 520.316

Rho n.a. 0.767

Log-likelihood -3,487.62 n.a.

Source: Authors’ own calculation.
Note: *** p < 0.01, ** p < 0.05, * p < 0.1. n.a. = not applicable; OLS = ordinary least squares; Std. err. = cluster-robust standard error.
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reduction in the value of agricultural production will reduce net agricul-

tural exports by about the same amount. Indeed, as noted above, climate 

change is projected to have an overall negative effect on yields of major 

food-security crops across SSA, with effects on yields expected to experi-

ence significant spatial variation (Berg et al. 2013; Sultan et al. 2013). Thus, 

the adoption of yield-enhancing CSA practices could be one promising 

approach to mitigate these effects. 

Summaries of simulated production values and net exports under the 

smart farmer option for maize and rice, disaggregated by REC, are shown in 

Table 5.3. For each option, summaries include countries for which data on 

simulated yields are available. The average production value of maize under 

the smart farmer option is 325 million (in constant 2004–2006 international 

dollar) (Table 5.3, column 4), whereas that of rice is 209 million (in constant 

2004–2006 international dollar) (Table 5.3, column 8). Using average 

annual production values during 2003–2010 as a benchmark scenario, 

simulated production values represent 36.8 percent (from 237.6 million to 

325 million for maize) and 15.6 percent (from 181 million to 209 million for 

rice) increase, on average, for the whole sample. Relative to the benchmark 

scenario, the percentage increase in production value of maize and rice is 

the highest for COMESA and SADC, respectively. 

Compared with the benchmark scenarios, the simulated net exports 

of maize (or rice) growers under the smart farmer option are significantly 

higher, especially for SADC, yet ECOWAS’s net exports appear to decline 

(Figures 5.7 and 5.8). Further research is needed to identify possible factors 

behind these inter-REC differences in the elasticity of net agricultural 

exports to CSA-induced increases in the value of agricultural production.

TABLE 5.3—CLIMATE-SMART AGRICULTURE PRODUCTION VALUE AND NET EXPORTS, 
SELECTED AFRICAN REGIONAL ECONOMIC COMMUNITIES, 2018–2025 PROJECTIONS

1 2 3 4 5 6 7 8

Smart farmer option—maize Smart farmer option—rice

2018–2025 2018–2025

ECOWAS SADC COMESA All ECOWAS SADC COMESA All

Maize production value
223.2 466.8 282.2 325.0 n.a. n.a. n.a. n.a.

(398.53) (610.46) (319.50) (487.64)

Rice production value 
n.a. n.a. n.a. n.a. 220.8 490.5 216.1 209.3

(305.02) (687.94) (505.34) (385.15)

Gross production value
5,588.3 3,631.8 4,081.6 4,808.8 5,286.2 2,733.0 4,649.3 4,890.6

(10,007.58) (3,839.83) (3,351.73) (7,225.27) (9,441.66) (757.27) (3,084.75) (7,437.86)

Total agricultural net exports
-114.5 106.9 -53.4 -55.7 -148.2 187.6 34.3 -69.7

(665.38) (204.39) (387.13) (508.46) (643.72) (144.19) (390.56) (550.53)

Source: Authors’ own calculation.
Note: Production values expressed in millions (in constant 2004–2006 international dollars). Agricultural net exports expressed in millions of US dollars. COMESA = Common 
Market for Eastern and Southern Africa; ECOWAS = Economic Community of West African States; n.a. = not applicable; SADC = Southern African Development Community.
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Conclusion
Given its heavy reliance on rainfed agriculture and projected climatic 

and weather changes, SSA faces multidimensional challenges in ensuring 

food and nutrition security as well as preserving its ecosystems. In this 

regard, CSA can play an important role in addressing the interlinked chal-

lenges of food security and climate change. The dominance of agricultural 

commodities in the region’s exports also implies that agroclimatic changes 

will affect countries’ ability to fully benefit from international trade. 

This chapter combines crop modeling and econometric analysis to 

simulate the effects of CSA on maize and rice yields and net agricultural 

exports (exports minus imports) in SSA, with a focus on three RECs: 

ECOWAS, COMESA, and SADC. The analysis assumes that farmers have 

FIGURE 5.7—SIMULATED TOTAL AGRICULTURAL NET EXPORTS 
WITH SMART FARMER OPTION, MAIZE, SELECTED AFRICAN 
REGIONAL ECONOMIC COMMUNITIES, 2018–2025

Source: Authors’ own calculation.
Note: COMESA = Common Market for Eastern and Southern Africa; ECOWAS = Economic Community of West African 
States; SADC = Southern African Development Community.
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FIGURE 5.8—SIMULATED TOTAL AGRICULTURAL NET EXPORTS 
WITH SMART FARMER OPTION, RICE, SELECTED AFRICAN 
REGIONAL ECONOMIC COMMUNITIES, 2018–2025

Source: Authors’ own calculation.
Note: COMESA = Common Market for Eastern and Southern Africa; ECOWAS = Economic Community of West African 
States; SADC = Southern African Development Community.

N
et

 e
xp

or
ts

 (U
S 

$ 
m

ill
io

ns
)

SADC COMESA ECOWAS

−200

−100

0

100

200

300

2018 2020 2022 2024 2025

Year



68   resakss.org

complete information regarding potential yields associated with alternative 

CSA practices and can choose the alternative that produces the highest 

yields for their agroecology. Expected effects of CSA are simulated for 

the period 2018–2025, by the end of which countries have committed to 

tripling intra-Africa trade in agricultural commodities and services as part 

of the 2014 Malabo Declaration. We find that CSA significantly increases 

both yields and agricultural trade flow, suggesting a potential role for CSA 

in improving resilience and spreading out agricultural production risks. 

The evidence also suggests a heterogeneous response of trade flows to CSA 

by REC.

Finally, although these findings are informative, it is worth noting 

that even if famers have complete information about a portfolio of CSA 

practices and their agronomic potential, adoption may be suboptimal 

due to, for example, limited budget, missing or imperfect markets, and 

institutional barriers (see Barrett 2008; Dillon and Barrett 2016; Foster 

and Rosenzweig 2010; and Suri 2011 for some discussions). Given that CSA 

practices have more complex sets of tangible and intangible components, 

relative to a single and discrete class of technologies, adoption of all the 

components is necessary to benefit from all the synergistic effects of CSA 

on productivity and sustainability. Additional research is therefore needed 

to examine the possible general equilibrium effects of large-scale adoption 

of CSA practices and to identify location-specific factors that mediate the 

interaction between climate change, agriculture, and trade.


